
Kubernetes Essentials

VMs vs Containers
1.2

FULL COURSE FULL COURSE

• Theory
• Deployment challenges on bare metal

• Virtual Machines and their limitations

• Containers

• Practical
• Docker Basics

 Unit 1.2

Deployment Challenges on Bare Metal

• Underutilization of resources

server

app

RAM CPU

ovƈƕƞƩloƆƄƱƦon

Storage

Deployment Challenges on Bare Metal

• Underutilization of resources

• Poor Isolation

server

app

RAM CPU Storage

app2

Deployment Challenges on Bare Metal

• Underutilization of resources

• Poor Isolation

• Dependency Hell

• Slow provisioning

• Compatibility

Virtual Machines

A Virtual Machine (VM) is a software-based emulation
of a physical server that runs its own Operating System (OS)

allowing multiple VMs to share the same physical hardware

Virtual Machines

server

Hypervisor

VM
emulated server

VM
emulated server

VM
emulated server

VM
emulated server

VM
emulated server

VM
emulated server

VM
emulated server

app app2 app3 app4

(sƓaƴnƖ V±ư)

sƗƯonƊ ƌưƬlaƗƌƬƫ

coƑưƌsƗƢƫt ƋaƯdƚƄƯƢ

* EacƋ V± ƥas ƌƗư ƬwƑ OƭerƄƗƦƫg SƜưteƐ

Virtual Machines Benefits (over Bare Metal)

• Better utilization of resources

• Strong isolation (Dedicated OS)

• Less resource contention

• No Shared libraries

• Fast and automatable creation / scaling / deletion

• Compatibility through standardized (virtual) hardware

* onƏƶ ƌf ƚƢ ơepƏƒƶ Ƭne ƄƓƭlƦƆaƱƌƬn ƓeƯ V±

** idƈƞƏ ƣor IƄC, DevOƓư, GitOƓư

Virtual Machines Limitations

• OS requires its own resources

0

10

20

30

40

50

60

70

80

90

CPU RAM Storage

App vs OS Resource Consumption

App OS

Virtual Machines Limitations

• OS requires its own resources

• Portability

• Slow boot time

 Not ideal for highly dynamic environments
(e.g. system of microservices)

server

Hypervisor

Virtual Machines

VM
emulated server

VM
emulated server

app app2 app3 app4

isƒƏƞƱiƒn ƦƖ ƩosƗ

V± reƔƘƦƯes ƘƓơƞteƖ Ƅƫd ƓƞƱcƋiƫg

Containers

Containers are a form of virtualization
where applications are executed in isolated environments

running on a shared kernel

server

Shared OS Kernel

Containers

Container
isolated process

Container
isolated process

Container
isolated process

Container
isolated process

Container
isolated process

Container
isolated process

Container
isolated process

app app2 app3 app4

no ƉƘƩl OS
(leƙƈƯƞgeƖ ưhƄƕƢơ keƕƫƈl)

LXC / namespaces / cgroups

jdk 21 python 3 python 2 node

a cƒƑƱƞinƈƕ ƭƞcƎư apƓ
anƇ Ƅƫy ƕƢƮuƌrƢƇ ơepƈƑơƢnƆƶ ==> raƓƌơ bƬoƗ!

VMs vs Containers

Containers VMs
High Low Portability
High * High Isolation
Fast Slow Boot Time

* the shared kernel poses a security risk should an attacker escape the container isolation

Containers and Nomenclature

• Container Image
• Standardized package that contains everything needed to run an

application

• Container Runtime
• Low-level component executing the container as a process on the host

• Container Engine
• Set of tools that allow us to manage and interact with containers

