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Deployment Challenges on Bare Metal 

• Underutilization of resources 
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Deployment Challenges on Bare Metal 

• Underutilization of resources 

• Poor Isolation 
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Deployment Challenges on Bare Metal 

• Underutilization of resources 

• Poor Isolation 

• Dependency Hell 

• Slow provisioning 

• Compatibility 

 



Virtual Machines 

A Virtual Machine (VM) is a software-based emulation 
of a physical server that runs its own Operating System (OS) 

allowing multiple VMs to share the same physical hardware 



Virtual Machines 
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Virtual Machines Benefits (over Bare Metal) 

• Better utilization of resources 

• Strong isolation (Dedicated OS) 

• Less resource contention 

• No Shared libraries  

• Fast and automatable creation / scaling / deletion 

• Compatibility through standardized (virtual) hardware 

 

* onƏƶ ƌf ƚƢ ơepƏƒƶ Ƭne ƄƓƭlƦƆaƱƌƬn ƓeƯ V± 

** idƈƞƏ ƣor IƄC, DevOƓư, GitOƓư 



Virtual Machines Limitations 

• OS requires its own resources 
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Virtual Machines Limitations 

• OS requires its own resources 

• Portability 

• Slow boot time 

 Not ideal for highly dynamic environments 
(e.g. system of microservices) 
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Containers 

Containers are a form of virtualization  
where applications are executed in isolated environments 

running on a shared kernel 
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VMs vs Containers 

Containers VMs 
High Low Portability 
High * High Isolation 
Fast Slow Boot Time 

* the shared kernel poses a security risk should an attacker escape the container isolation 



Containers and Nomenclature 

• Container Image 
• Standardized package that contains everything needed to run an 

application 

• Container Runtime 
• Low-level component executing the container as a process on the host 

• Container Engine 
• Set of tools that allow us to manage and interact with containers 

 


